A concepção dos conjuntos numéricos recebeu maior rigor em sua construção com Georg Cantor, que pesquisou a respeito do número infinito.
A construção de todos os conjuntos numéricos que hoje possuímos parte de números inteiros usados apenas para contar até os números complexos que possuem vasta aplicabilidade nas engenharias, nas produções químicas, entre outras áreas.
Definir conjunto é algo tão primitivo que se torna uma tarefa difícil. Entretanto, compreendemos conjunto como uma coleção de objetos, números, enfim, elementos com características semelhantes.
Definir conjunto é algo tão primitivo que se torna uma tarefa difícil. Entretanto, compreendemos conjunto como uma coleção de objetos, números, enfim, elementos com características semelhantes.
Sendo assim, os conjuntos numéricos são compreendidos como os conjuntos dos números que possuem características semelhantes. Nesta seção, a concepção desses conjuntos será abordada, visando à compreensão dos elementos que constituem cada um dos conjuntos numéricos.
Temos então os seguintes conjuntos numéricos:
Conjunto dos números Naturais
Conjunto dos números Inteiros
Conjunto dos números Racionais
Conjunto dos números Irracionais
Conjunto dos números Reais
Conjunto dos números Complexos
Assim como a progressão aritmética, a progressão geométrica (PG) é uma maneira de estabelecer uma seqüência de números. Neste caso, no entanto, em vez de uma soma como elemento constante, temos uma múltiplicação.
por: Gabi de Cássia
Nenhum comentário:
Postar um comentário